
CENG3430 Rapid Prototyping of Digital Systems

Lecture 09:

Rapid Prototyping (III) –

High Level Synthesis

Ming-Chang YANG

mcyang@cse.cuhk.edu.hk

mailto:mcyang@cse.cuhk.edu.hk

What else can we do with ZedBoard?

CENG3430 Lec09: High Level Synthesis 2021-22 T2 2

• Programmable Logic (PL) is also ideal for high-

speed and high-parallel logic and arithmetic.

– However, it might be very hard to implement sometimes.

Ex: Neural Network

Troublesome!

Outline

• High-Level Synthesis Concept

• Vivado High-Level Synthesis

– Inputs and Outputs

– High-Level Synthesis Process

• Interface Synthesis

• Algorithm Synthesis

– Optimizations

• Loop

• Array

• Lab Exercise: Accelerating Floating Point Matrix

Multiplication with HLS

CENG3430 Lec09: High Level Synthesis 2021-22 T2 3

High-Level Synthesis (HLS)

• By abstracting/hiding low-level details with high-level

representations, high-level synthesis (HLS)

simplifies the description of the circuit dramatically.

CENG3430 Lec09: High Level Synthesis 2021-22 T2 4

The structural level

involves instantiating,

configuring and connecting

hardware elements down to

the levels of LUTs and FFs.

The register transfer level

(RTL) interprets operations

occurring between registers.

The behavioral HDL

describes how the circuit

“behaves” (what we use!)

The high level expresses

designs at an algorithmic

level of abstraction.

High

Level

Synthesis

Logic

Synthesis

HLS vs. Logic Synthesis

• High-level synthesis

means synthesizing the

high-level code into an

HDL description.

• In FPGA design, the term

“synthesis” usually refers

to logic synthesis.

– The process of interpreting

HDL code into the netlist.

• In the HLS design flow,

both types of “synthesis”

are applied (one after the

other)!
CENG3430 Lec09: High Level Synthesis 2021-22 T2 5

Why High-Level Synthesis (HLS)?

1) HLS from high-level languages is convenient.

– Engineers are comfortable with languages such as C/C++.

2) The designers simply direct the process, while the

HLS tools (i.e., Vivado HLS) implement the details.

– Designs can be generated rapidly; but the designer must

trust the HLS tools in implementing lower-level functionality.

3) HLS separates the functionality and implementation.

– The source code does not fix the actual implementation.

– Variations on the implementations can be created quickly

by applying appropriate “directives” to the HLS process.

In one word: HLS shoots for productivity.

CENG3430 Lec09: High Level Synthesis 2021-22 T2 6

Design Metrics in HLS

• Hardware design always faces a trade-off between:

1) Area, or Resource Cost — the amount of hardware

required to realize the desired functionality;

2) Speed (specifically throughput or latency) — the rate at

which the circuit can process data.

CENG3430 Lec09: High Level Synthesis 2021-22 T2 7

Poor

Design!

Outline

• High-Level Synthesis Concept

• Vivado High-Level Synthesis

– Inputs and Outputs

– High-Level Synthesis Process

• Interface Synthesis

• Algorithm Synthesis

– Optimizations

• Loop

• Array

• Lab Exercise: Accelerating Floating Point Matrix

Multiplication with HLS

CENG3430 Lec09: High Level Synthesis 2021-22 T2 8

Vivado HLS

CENG3430 Lec09: High Level Synthesis 2021-22 T2 9

Inputs to Vivado HLS

1) C/C++/SystemC Files

– Functions to be

synthesized.

2) C Testbench Files

– Basis for verifying both

C code and RTL codes.

3) Constraints

– Timing constraints along

with a clock uncertainty

and device details.

4) Directives

– Implementation styles of

pipelining and parallelism.

CENG3430 Lec09: High Level Synthesis 2021-22 T2 10

Outputs from Vivado HLS

1) VHDL or Verilog

files/codes

– Synthesizable RTL-

level code that can be

integrated into a project

to generate a bitstream.

2) Packaged IP

– Convenient for direct

inclusion into the IP

block design.

3) SystemC model

– Not intended for

synthesis but only for

RTL simulation.
CENG3430 Lec09: High Level Synthesis 2021-22 T2 11

Vivado HLS Process

• The HLS process internally involves two major tasks:

1) The interface of the design, i.e., its top-level connections;

2) The functionality of the design, i.e., the algorithm(s).

CENG3430 Lec09: High Level Synthesis 2021-22 T2 12

Interface

Synthesis

Vivado HLS: Interface Synthesis

• The interface can be created manually or inferred

automatically from the code (interface synthesis).

– The ports are inferred from the top-level function

arguments and return values of the source C/C++ file;

– The protocols are inferred from the behavior of the ports.

CENG3430 Lec09: High Level Synthesis 2021-22 T2 13

Vivado HLS: Algorithm Synthesis (1/4)

• The algorithm synthesis comprises three primary

stages, which occur in the following order:

1) Extraction of Data Path and Control

2) Scheduling and Binding

3) Optimizations

1) Extraction of Data Path and Control

– The first stage of HLS is to analyze the C/C++/SystemC

code and interpret the required functionality.

– The implementation will normally have a datapath

component, and a control component.

• Datapath: operations performed on the data samples,

• Control: the circuitry required to co-ordinate dataflow processing.

CENG3430 Lec09: High Level Synthesis 2021-22 T2 14

Vivado HLS: Algorithm Synthesis (2/4)

2) Scheduling and Binding

– Scheduling is the translation of the RTL statements

interpreted from the C code into a set of operations, each

with an associated duration in terms of clock cycles.

– Binding is the process of associating the scheduled

operations with the physical resources of the target device.

CENG3430 Lec09: High Level Synthesis 2021-22 T2 15

Vivado HLS: Algorithm Synthesis (3/4)

2) Scheduling and Binding (Cont’d)

– The resulting implementation has a set of metrics including

(i) latency, (ii) throughput, and (iii) the amount of resources.

• By default, the HLS process optimizes area (i.e., the first strategy).

CENG3430 Lec09: High Level Synthesis 2021-22 T2 16Example: Calculating the average of an array of ten numbers.

Vivado HLS: Algorithm Synthesis (4/4)

3) Optimizations

• The designer can dictate the HLS process towards

the desired implementation goals:

– Constraints: The designer places a limit on the design.

• For instance, the minimum clock period may be specified.

– This makes it easy to ensure that the implementation meets the

requirements of the system into which it will be integrated.

– Directives: The designer can exert more specific influence

over aspects of the RTL implementation.

• HLS tool provides pragmas that can be used to optimize the design.

– This can yield significant changes to the RTL output.

– With knowledge of the available directives, the designer can optimize

according to application requirements.

CENG3430 Lec09: High Level Synthesis 2021-22 T2 17

https://china.xilinx.com/html_docs/xilinx2019_1/sdsoc_doc/hls-pragmas-okr1504034364623.html#wqn1504034365505

Loop Optimizations

• Loops are used extensively in programming, and

constitute a natural method of expressing operations

that are repetitive in some way.

• By default, Vivado HLS seeks to optimize area.

– Loops are automatically “rolled” (a.k.a. rolled loops).

– That is, loops time-share a minimal set of hardware.

CENG3430 Lec09: High Level Synthesis 2021-22 T2 18

• The operations in a loop are

executed sequentially.

• The next iteration can only

begin when the last is done.

Loop Optimization #1: Pipelining (1/2)

• Several loop optimizations can be made using

directives in Vivado HLS.

– Allowing the resulting implementation to be altered with just

few or even no changes to the software code.

• Loop pipelining allows the operations in a loop to be

implemented in a concurrent manner.

CENG3430 Lec09: High Level Synthesis 2021-22 T2 19

– The initiation interval (II) is

the number of clock cycles

between the start times of

consecutive loop iterations.

Loop Optimization #1: Pipelining (2/2)

CENG3430 Lec09: High Level Synthesis 2021-22 T2 20

• To pipeline a loop, put the directive “#pragma HLS
pipeline [II=1]” at the beginning of the loop.

– Vivado HLS automatically tries to pipeline the loop with the

minimum initiation interval (II).

– Without the optional II=1 , the best possible initiation

interval 1 is used, meaning that input samples can be

accepted on every clock cycle.

Loop Optimization #2: Unrolling (1/2)

• Loop unrolling is a technique to exploit parallelism

by creating copies of the loop body.

– Unrolling a loop by a factor of N creates N copies of the

loop body, and the loop variable referenced by each copy is

updated accordingly.

• If the factor N is less than the total number of loop iterations (10 in

the below example), it is called a “partial unroll”.

• If the factor N is the same as the number of loop iterations, it is

called a “full unroll”.

CENG3430 Lec09: High Level Synthesis 2021-22 T2 21

Rolled Loops Loops Unrolled by a Factor of 2

Loop Optimization #2: Unrolling (2/2)

• Loop unrolling creates more operations in each loop

iteration, resulting higher parallelism and throughput.

• To unroll a loop, put the directive “#pragma HLS
unroll [factor=N]” at the beginning of the loop .

– Without the optional factor=N, the loop will be fully

unrolled by default.

CENG3430 Lec09: High Level Synthesis 2021-22 T2 22

Factors Limiting the Parallelism (1/2)

• Loop optimizations aim at exploiting the parallelism

between loop iterations.

– However, parallelism between loop iterations can be limited

mainly by data dependence or hardware resources.

CENG3430 Lec09: High Level Synthesis 2021-22 T2 23

– The subsequent iteration cannot start

until the current iteration has finished.
– Array accesses are a common

source of loop-carried dependences.

– Automatic dependence analysis can be too conservative:

Directive “#pragma HLS dependence” allows you to

explicitly specify and avoid a false dependence.

• Loop-carried Dependence: A data dependence

from an operation in an iteration to

another in a subsequent iteration.

Factors Limiting the Parallelism (2/2)

• Another limiting factor for parallelism is the number of

available hardware resources.

– If the loop is pipelined with an initiation interval of one,

there are two read operations.

• If the memory has only one port, then two read operations cannot

be executed simultaneously and must be executed in two cycles.

– Thus, the minimal initiation interval (II) can only be two.

CENG3430 Lec09: High Level Synthesis 2021-22 T2 24

Array Optimization: Partitioning (1/3)

• Arrays are usually mapped to the Block RAM (BRAM)

of PL, where BRAM has limited read/write ports.

• Partitioning an array into smaller arrays increases

the port number and may improve the throughput.

• To partition an array, put directive “#pragma HLS
array_partition [arguments]” within the

boundaries where the array variable is defined.

– variable=<name>: Specifies the array to be partitioned.

– <type>: Optionally specifies the partition type.

– factor=<int>: Specifies the number of smaller arrays that

are to be created/partitioned.

– dim=<int>: Specifies which dimension of a multi-

dimensional array to partition.
CENG3430 Lec09: High Level Synthesis 2021-22 T2 25

Array Optimization: Partitioning (2/3)

• The <type> argument specifies the partition type:

– block: Splits the array into N equal blocks, where N is the

integer defined by the factor argument.

– cyclic: Creates smaller arrays by interleaving elements

from the original array.

– complete: Decomposes the array into individual elements

(it is also the default).

CENG3430 Lec09: High Level Synthesis 2021-22 T2 26

Array Optimization: Partitioning (3/3)

• The <dim> argument specifies which dimension of a

multi-dimensional array to partition.

– Non-zero value: Only the specified dimension is partitioned.

– A value of 0: All dimensions are partitioned.

CENG3430 Lec09: High Level Synthesis 2021-22 T2 27

Outline

• High-Level Synthesis Concept

• Vivado High-Level Synthesis

– Inputs and Outputs

– High-Level Synthesis Process

• Interface Synthesis

• Algorithm Synthesis

– Optimizations

• Loop

• Array

• Lab Exercise: Accelerating Floating Point Matrix

Multiplication with HLS

CENG3430 Lec09: High Level Synthesis 2021-22 T2 28

Lab Exercise: Matrix Multiplication (1/4)

• In this lab, we will develop an accelerator for the

floating-point multiplication on 32x32 matrices.

– The accelerator is connected to an AXI DMA peripheral in

PL and then to the accelerator coherence port (ACP) in PS.

CENG3430 Lec09: High Level Synthesis 2021-22 T2 29

Lab Exercise: Matrix Multiplication (2/4)

• The function to be optimized is defined in “mmult.h”:

CENG3430 Lec09: High Level Synthesis 2021-22 T2 30

 L1 iterates over the

rows of the input matrix A.

 L2 iterates over columns

of the input matrix B.

 L3 multiplies each

element of row vector A

with an element of column

vector B and accumulates it

to the elements of a row of

the output matrix C.

How? Utilize “directives” properly to direct HLS!

Lab Exercise: Matrix Multiplication (3/4)

• Resource Cost (Post-Implementation Utilization)

CENG3430 Lec09: High Level Synthesis 2021-22 T2 31

Should NOT

over-utilize

the resources!

Lab Exercise: Matrix Multiplication (4/4)

• Performance (Latency and HW/SW Speedup)

CENG3430 Lec09: High Level Synthesis 2021-22 T2 32

The higher, the slower!

The lower, the slower!

Should NOT violate timing constraint!
(i.e., the estimated clock period should be less than the target one)

https://www.xilinx.com/htmldocs/xilinx2020_2/hls-guidance/200-887.html

Class Exercise 9.1

• If the directive is used to pipeline L2 loop body, how

should a and b be partitioned for better performance?

CENG3430 Lec09: High Level Synthesis 2021-22 T2 33

Student ID:

Name:

Date:

template <typename T, int DIM>
void mmult_hw(T a[DIM][DIM], T b[DIM][DIM], T out[DIM][DIM])
{

// matrix multiplication of a A*B matrix
L1:for (int ia = 0; ia < DIM; ++ia)
{

L2:for (int ib = 0; ib < DIM; ++ib)
{

#pragma HLS pipeline
T sum = 0;
L3:for (int id = 0; id < DIM; ++id)
{

sum += a[ia][id] * b[id][ib];
}
out[ia][ib] = sum;

}
}
return;

}

Summary

• High-Level Synthesis Concept

• Vivado High-Level Synthesis

– Inputs and Outputs

– High-Level Synthesis Process

• Interface Synthesis

• Algorithm Synthesis

– Optimizations

• Loop

• Array

• Lab Exercise: Accelerating Floating Point Matrix

Multiplication with HLS

CENG3430 Lec09: High Level Synthesis 2021-22 T2 35

